Self-Discipline is Key

Self- Discipline is key!  With so much of our schooling and training moving to online formats, time management is becoming more and more important.  Have you ever sat down at your computer or opened your phone and suddenly forget what you were about to do because you became distracted?  Well, this is happening to us everyday and all day, but we can defeat this problem and others with better self-discipline!

What is self-discipline?  Google defines it as the ability to control one’s feelings and overcome one’s weaknesses; the ability to pursue what one thinks is right despite temptations to abandon it. I like to simplify this and define self-discipline as simply doing what you need to do, even when you don’t want to.  Other than distractions coming at us from every device, we also face the challenge of setting our own daily schedules to accomplish goals.  If attending a regular school or work day, your schedule is set for you and you just follow it.  But, without the structure of the school or work day, which most of us are facing, we now must create our own structure by creating a schedule and then exercising the self-discipline to stick to it.

It is okay to set boundaries to have set times to check emails, social medias, and messages throughout our day so we are not constantly interrupted while learning or completing a task.  Once again, this will require us to exercise self-discipline.  So, let’s summarize some tips for success!

Steps to Success

  1. Set a schedule for yourself DAILY.  (This alone can be a task as we sort out what must be the priorities each day!)
  2. Set a timeline to complete goals that cannot be done in one day and pace them out daily to meet the set deadline.
  3. And finally, exercise SELF-DISCIPLINE throughout each day to stay focused, less distracted, and on task.  Because after all, we can set schedules and make goals all day, but if we can’t stick to it, then we will not be successful!

I always like to ask myself, What are my “have-to’s”?  That helps me get started and then, of course, you can always leave yourself some playtime or downtime each day to remain balanced!

Online or On-Campus

We learn something new everyday, and as technology rapidly accelerates, education is becoming more available to people throughout the world. All someone needs is a smartphone and an internet connection to have the world at their fingertip. Subsequently, people wonder and debate whether it’s better to learn in a classroom setting or through a computer screen, ie, online or on-campus. Therefore, I thought sharing my experience with students would help them make an informed decision.

This spring is my third semester of college, and during my first two, I solely did online courses, ranging from English classes to Accounting, or STEM-related ones in computer science and calculus. Unlike the myth, online is not less demanding or rigorous than on campus-courses; they’re very similar. Online and on-campus professors both follow schedules based on their syllabi. They both present similar challenges: difficult material, a requirement for time management, and discovering how the class functions. Finally, in both contexts, there should be a professor present who enjoys his or her job and wants to foster growth and critical thinking. I enjoyed my online courses for these reasons, but the essential reason I took online courses is that they were convenient for me, which is also why many other students take them.

When taking online courses, students can create a learning environment tailored to their learning style and needs. For example, they don’t need to over study a topic if they feel comfortable on it, which may occur in a group class setting; or on the contrary, students can spend as much time as they need to understand something. This independence can appear daunting sometimes, but people can succeed in virtual classes with some determination and a proactive mindset. They don’t have to feel alone, either. They can reach out to other students through discussion boards, or they could email their professors to ask a question or schedule a review session. They should try to answer the problem themselves first, though. Practicing this skill will help make a student more marketable to the workforce since he or she will have acquired valuable problem-solving skills.

In conclusion, I’d recommend online courses to students because they maintain high standards and develop competency and self-sufficiency. Most professionals suggest having both an online and in-person class because then students can have both sets of benefits, and I fully agree with them.

Forget to Learn

A student learns that he has a test coming up sometime next week; a week goes by, and the student just now starts studying for his exam: the day before it! We’ve all been there; sometimes, it’s unavoidable, but students who continuously fall into this trap of procrastinating need to improve their study methods.

One of the best scientifically proven ways to study is through spacing assignments, known as the spacing effect. Students divide their studying time up into multiple periods, instead of all at once, which is called cramming. Cramming will help students remember information in the short run; however, they will lose this knowledge over time. Spacing has the opposite effect: it is less stressful, and students will have more time to process information and store it into their long-term memories. According to numerous studies, students who study through spacing perform significantly higher on retests compared to students who crammed.

One major criticism from learners who are new to the spacing method is that they forget what they learn. They feel frustrated because the material they spent time practicing days before they’ve since forgotten and now need to relearn. Their perception is justifiable; people are bound to forget some information, but what they don’t realize is how crucial forgetting is in the learning process.

When students must relearn material, they strengthen their neural connections involving the subject, which helps them solidify the knowledge. Ultimately, most courses in school build on previous ones, so it’s imperative for students to understand and recall information from prior units. For example, when a student enters Algebra Two, it’s assumed that they know the material from Algebra One, and the course will build on those topics. However, if the student only crammed for the Algebra One tests, then most of that material has been lost, and there are many gaps. While initially, it may frustrate students to relearn material that they’ve just studied, it’s an essential part of the learning process. Finding these gaps also exposes what the student must review more, and by doing so, they will strengthen those connections and have greater ease remembering the material later.

The opposite effect occurs during cramming; students proceed past the unit without retaining much of what they’ve learned. Students can avoid this dilemma by working on their assignments diligently, quizzing themselves without aid from their notes, and acknowledging areas that require more attention. By implementing these strategies, they’ll create the habits to succeed in whatever field they’re pursuing, from sports to law enforcement to medical school.

When to Introduce the Calculator

When Should Students be Introduced to Calculators?  I am sure that this topic could spark an interesting debate. Well, I certainly have no interest in debating, but, I would like to bring to light, my professional belief on this topic, after working with math students for almost 20 years.

First, I would like to explain theoretical mathematics as doing math independent of the world.  It uses reasoning, proof, and abstract concepts to establish truth upon truth.  While things going on in the world around us may inspire a theoretical mathematician with new ideas, the study of theoretical mathematics does not depend on the world around us.  So, some might argue that if math does not have a direct “real-world application”, then it is useless.  This is not true since even applied mathematicians draw on theoretical mathematics to solve problems related to the the world.

Research has shown that students receiving more instruction in theoretical math do better overall because they build a mathematical foundation that will allow them to extrapolate math to other real-world situations.  If math is just taught for a specific application, then the student will not be able to transfer that knowledge to another context.  Theoretical mathematics does not change. It is simply, truth.

Now, let’s get back to the calculators! What is the purpose/role of calculators in mathematics?  To make it simple, calculators are used to speed up extensive calculations involved in real-world problems.  The problem is that students who haven’t developed a strong math foundation are using these calculators for much smaller calculations that they should be doing by hand, to strengthen their grasp of numbers, or even in their head in some cases.  When students do computations by hand, they develop a feel for number patterns and a respect for mathematics.  They build a foundation of mathematics that will be evergreen, and thus withstand the test of time and any changing technology.

Consider this example:  I watched an advanced 9th grader go to her calculator to compute 105-90.  A person with a strong sense of numbers would likely “mentally” compute this by knowing that from 90, it’s 10 more to 100 and then 5 more past 100 so the difference is just 10+5 =15.  Once this skill is developed, it is certainly quicker to state this difference without a calculator!  Just in case you think this example is too “complicated”, what about watching a student perform 13-9 on a calculator?  That is not what a calculator was invented to be used for!

So, what am I suggesting?  I am suggesting that calculators aren’t really needed until a student has a solid grasp of number sense.  So solid, they won’t “forget” how to do basic arithmetic on all numbers, including integers, fractions, and decimals. So, when is this?  Well, clearly it will vary from student to student, but in general, I would go as far as to suggest not allowing calculators until at least precalculus.  And even then, limiting their use.  Even the AP Calculus exam and the SAT have “no calculator” sections!

I say to all math teachers, let’s put the pencils in student’s hands and give them lots of paper and let them DO MaTh!  There is no shortcut or tricks to learning math.  Each student has to walk the road and allow their brain to make the connections.

 

Summer Learning

Summer Learning—An Enrichment Opportunity

Summer school!  What student or parent wants to hear that?    Not too many, and that is because the term “summer school” has a negative connotation associated with it.  Usually it insinuates that the student fell short during the school year and has to use the summer to make up their loss. But what about “Summer Learning”?  Does this sound more favorable?

What Do Studies Show?

According to a 2010 study by the Wallace Foundation, just 25 percent of school-age children participate in a summer learning program.  Why should only failing students use the summer to play catch up?  Why not all students use the summer to maintain and get ahead?  I suggest that parents and students see the summer downtime as an opportunity for enrichment and learning for fun, if you will.  Throughout the school year, our students experience a lot of pressures from grades and distractions from other students and activities and rarely get to learn for the sake of learning and to be enriched.

In addition, numerous studies have shown that students forget a portion of what they have learned during the school year over the summer.  This causes many teachers to spend a lot of time reviewing skills and delaying lessons at the beginning of the year.   Students just fall behind as they try to jump back into the school year and keep up. 

Nature of Learning Math

In particular, math is one subject that requires consistent practice and repetition.  Could you imagine if you interrupted your workout routine for 2 months and did nothing?  Surely you might experience, weight gain, muscle loss, and a decrease in cardiovascular strength.  It should make sense that the same thing happens to our math skills if we don’t stay in good practice.

There are many proven benefits to summer learning.  These may include students’ grades upon their return to school, their attendance, and even classroom behavior.  Summer enrichment and learning programs can be found in many places in the community.  MaThCliX®  offers summer math lab and several enrichment classes during the summer.  Math enrichment can even be practiced at home!  You can visit https://www.greatschools.org/gk/articles/build-math-skills/ to learn about some ways to build up math skills around the home.

The Department of Transpo-Repetition

Take a moment and think about your greatest talent or accomplishment.  Did it come naturally to you?  Regardless of your inherent skills and natural gifts, I’d wager there’s no fluke as to why you became proficient at it?  You probably practiced it.  Even those once-in-a-lifetime achievements are not flash-pan.  It takes consistent rehearsal to master any skill, conventional wisdom pointing towards about 10,000 hours of active repetition to completely develop any proficiency, skill, or craft.  

Cognitive sciences hold that the brain retains information through the creation of neural path via a process called “rehearsal”. Building a highway incorporates this rehearsal process into a simple analogy. The first time we see a new vocabulary word or equation, the brain begins the process of cataloging that information by making a very linear path to the idea. Prefatory manipulation of that same information soon develops that road into a two-lane highway, one could think of as an ellipse.  Over time, the more we use a given fact or review a certain concept, we keep elaborating on this highway and eventually our brain adds passing lanes and short-cuts along that same highway; instead of one to and fro’ route created to reach the destination, the brain builds a myriad of possibilities to aide in our scholarly journey.

As soon as you find something you enjoy, or something that really sparks your interest, “go with it”.  Do not hesitate to find sixth gear and “put the pedal to the metal”.  As we break down individual pieces of something we begin to not simply understand what, but why.  Several highly successful entrepreneurs and artists vigorously rehearse this truly simple process:  

  1. Write. It. Down.    

Get a small notebook, and keep it and a pen on you at all times.  Pockets are for things, not your hands.  Even a simple one-word note can lock it in your “thought processor”.  

  1. Re-write.  

Did you capture everything the first time?  What was it that you really wanted to say?  

  1. Re-work.  Re-build.  Re-do.  

Was that everything you wanted to know?  Is that the only reason you wanted to know it?  Is that the last time you want to visit this?  

  1. HAVE FUN WITH THE PROCESS

If at first you don’t succeed, try, try again. 

Many awesome things are nonsense the first time we experience them, right?  At some point we all could not talk or form sentences, we could not write, we could not read… In grammar school we constantly rehearsed these skills, and continue to rehearse these techniques the rest of our lives.   Mastering a skill takes no more effort than continuous performance and utilization of that skill. As the saying goes: “You know how you get to Carnegie Hall, don’t ya?”  Practice.  That first draft pales in comparison to that final, proofed, and re-worked draft.  Your first solo will probably not be the best, but your last will certainly NOT be the worst.